THE MORE YOUR KNOW: OCTANE AND ETHANOL IN GASOLINE

Tricia Braid

Jul 26, 2016  |  Today's News

The Environment and Energy Study Institute put together this great information on the history of gasoline and octane. We know that ethanol provides a high octane, low carbon option to fuel blenders. Achieving higher levels of ethanol inclusion in our nation’s fuel supply is built on this information. At IL Corn, we know that your homegrown, renewable product –ethanol—can be part of the solution, rather than just part of a problem.

SOURCE: EESI

A cornerstone of U.S. environmental policy has been the reduction of harmful tailpipe emissions from cars and trucks. Thanks to EPA regulations of mobile sources, air pollutants have been reduced by millions of tons in the urban environment. Several EPA fuel regulations have concerned octane. Octane is a gasoline additive that is needed for the proper functioning of modern engines. Octane sources have taken many forms throughout the years, both renewable and petroleum-based. They include lead, methyl tertiary butyl ether (MTBE), benzene, toluene, ethyl-benzene and xylene (BTEX), and ethanol (a biofuel). As adverse health and environmental consequences have been discovered for lead and petroleum-based octane providers, they have been removed from the fuel supply or decreased. Today, there are two primary sources of octane used in the U.S. gasoline supply, the BTEX complex (a petroleum refining product commonly referred to as gasoline aromatics), and ethanol.

Octane

The octane rating is a measure of a fuel's ability to avoid knock. Knock occurs when fuel is prematurely ignited in the engine's cylinder, which degrades efficiency and can be damaging to the engine. Knock is virtually unknown to modern drivers. This is primarily because fuels contain an oxygenate that prevents knock by adding oxygen to the fuel. This oxygenate is commonly referred to as octane.

At most retail gasoline stations, three octane grades are offered, 87 (regular), 89 (mid-grade), and 91-93 (premium). The higher the octane number, the more resistant the gasoline mixture is to knock. The use of higher octane fuels also enables higher compression ratios, turbocharging, and downsizing/downspeeding-all of which enable greater engine efficiencies and higher performance. Currently, high-octane fuel is marketed as 'premium,' but automotive manufacturers have expressed interest in raising the minimum octane pool in the United States to enable smaller, more efficient engines. Doing so would increase vehicle efficiency and lower greenhouse gases through decreased petroleum consumption.

Ethanol

Early automakers expressed interest in plant-based alcohol fuels, such as ethanol. Henry Ford designed the first Model T to run on ethanol. But, at the time, gasoline was a much cheaper fuel. Additionally, Standard Oil was "reluctant ... to encourage the manufacture and sale of a competitive fuel produced by an industry in no way related to petroleum." The petroleum industry has controlled the fuels market ever since.

During the 1973 oil embargo, regular unleaded gasoline prices jumped 57 percent and routine gasoline shortages also occurred. These events, and the regulation of many air pollutants, sparked a renewed interest in fuel efficiency, electric vehicles, and renewable fuels such as ethanol, which were seen as ways to meet the new regulations and reduce petroleum consumption. Today, the majority of ethanol in the United States is blended with gasoline to produce E10 (10 percent ethanol, 90 percent gasoline). Over 95 percent of gasoline sold in the United States is E10.

Ethanol as an Octane Booster

In addition to having lower lifecycle greenhouse gas emissions than conventional gasoline, ethanol is an excellent octane provider, with neat (pure) ethanol having an octane rating of over 100. Currently, refiners create 'sub-octane gas,' which has a lower octane rating than required. Ethanol, which is generally the cheapest octane provider, is then used to bring the octane rating of the gasoline up to the labelled octane value on the gas pump. For example, 84 octane gasoline is typically blended with 10 percent ethanol to reach the minimum octane requirement of 87 for retail gasoline.